Importance of Logical Identifiers, Names and Codes (LOINC®) in Developing in vitro Diagnostic (IVD) Infrastructure to Support a National Evaluation System for health Technology (NEST)

Michael Waters, Ph.D.

Office of In Vitro Diagnostics and Radiological Health
Center for Devices and Radiological Health
Food and Drug Administration

June 8, 2017
Overall Goals

Support efforts to harness non-traditional data sources (e.g., data collected from clinical experience) to:

• support regulatory decision making,

• reduce burdens to the healthcare ecosystem and

• promote development of innovative solutions to public health challenges.
Supporting Meaningful Data Access: IVD Code Harmonization (Semantic Interoperability)

Semantic interoperability for IVD tests, is essential to enabling multi-source laboratory data access and advancing health information technology.

- The *unambiguous and consistent representation of laboratory tests (and results)* can drive the development of decision support tools and disease monitoring systems, provide ‘real-world evidence’ of safety and effectiveness and far more.
- Focus on the adoption of Logical Observations, Identifiers, Names and Codes (LOINC®)
Semantic Interoperability Importance

1. *Laboratory consistency*:
 - Decision support/knowledge generation
 - Public health reporting
 - Real-time epidemiology (*including outbreaks*)
 - Laboratory cost savings
 - Signal detection

2. *Adverse events*:
 - Reduction in coding errors

3. *FDA*:
 - Post-market information (*w/ Unique Device Identifiers (UDI)*)
 - Earlier IVD clearance

4. *Other...*
Outline

1. Using Real-World Data/Evidence (RWD/RWE) to support regulatory decision making for *in vitro* Diagnostic (IVD) devices

2. Value of a National Evaluation System for health Technology (NEST)

3. Developing IVD infrastructure to support NEST

4. Collaborating to develop valuable/sustainable infrastructure for stakeholders (Better/ Cheaper/ Faster)
Outline

1. Using Real-World Data/Evidence (RWD/RWE) to support regulatory decision making for *in vitro* Diagnostic (IVD) devices

2. Value of a National Evaluation System for health Technology (NEST)

3. Developing IVD infrastructure to support NEST

4. Collaborating to develop valuable/sustainable infrastructure for stakeholders (Better/ Cheaper/ Faster)
What is RWD/RWE?

Real-World Data (RWD)*
Data relating to patient health status and/or the delivery of health care *routinely collected from a variety of sources*

Real-World Evidence (RWE)*
Clinical evidence regarding the usage and potential benefits or risks of a medical product *derived from analysis of RWD*

Adapted from the Draft RWE Guidance: https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-meddev-gen/documents/document/ucm513027.pdf
Good Decisions Require Good Data

‘Fit for Purpose’ –
Data must be complete, consistent, accurate, and contain all critical data elements needed to evaluate a medical device and its claims.

Safety
Are there reasonable assurances, based on valid scientific evidence that probable benefits to health from use of the device outweigh any probable risks?
[860.7(d)(1)]

Effectiveness
Is there reasonable assurance, based on valid scientific evidence that the use of the device in the target population will provide clinically significant results?
[860.7(e)(1)]
Outline

1. Using Real-World Data/Evidence (RWD/RWE) to support regulatory decision making for *in vitro* Diagnostic (IVD) devices

2. Value of a National Evaluation System for health Technology (NEST)

3. Developing IVD infrastructure to support NEST

4. Collaborating to develop valuable/sustainable infrastructure for stakeholders (Better/ Cheaper/ Faster)
National Evaluation System Benefits

Current
- Passive Surveillance
- Pre/post-market balance with limited post-market data
- Inefficient one-off studies
- Parallel track to clinical practice

National System
- Active surveillance to better protect patients
- Leverage RWE to support regulatory decisions
- Embedded in health care system (e.g., data collected during routine clinical care)
- Shared system to inform the entire ecosystem (e.g., patients, clinicians, providers, payers, FDA, CDC, device firms)
What is NEST?

National Evaluation System for healthcare Technology (NEST)

NEST is a strategically-driven, coordinated network of voluntary partnerships to with the combined goal of generating “better evidence more efficiently for medical device evaluation and regulatory decision-making by leveraging RWE throughout the total product lifecycle.”

http://mdic.org/cc/landscape/
NEST: Concept to Reality

CDRH Priorities to Support NEST*

1. “Award grants … to support NEST development and implementation.”

2. “Issue draft guidance to clarify how RWE may be used to support… regulatory decisions”

3. “Increase access to and use of real-world evidence to support regulatory decisions”

4. “Work with the medical device ecosystem, e.g., federal partners, health care system, manufacturers, payers and patients to build NEST.”

*https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhreports/ucm301912.htm
1. “Award grants ... to support NEST development and implementation.”

2. “Issue draft guidance to clarify how RWE may be used to support... regulatory decisions”

3. “Increase access to and use of real-world evidence to support regulatory decisions”

4. “Work with the medical device ecosystem, e.g., federal partners, health care system, manufacturers, payers and patients to build NEST.”

*https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhreports/ucm301912.htm
NEST: Concept to Reality

CDRH Priorities to Support NEST*

1. “Award grants ... to support NEST development and implementation.”

2. “Issue draft guidance to clarify how RWE may be used to support... regulatory decisions”

3. “Increase access to and use of real-world evidence to support regulatory decisions”

4. “Work with the medical device ecosystem, e.g., federal partners, health care system, manufacturers, payers and patients to build NEST.”

*https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhreports/ucm301912.htm
1. “Award grants … to support NEST development and implementation.”

2. “Issue draft guidance to clarify how RWE may be used to support… regulatory decisions”

3. “Increase access to and use of real-world evidence to support regulatory decisions”

4. “Work with the medical device ecosystem, e.g., federal partners, health care system, manufacturers, payers and patients to build NEST.”

*https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhreports/ucm301912.htm
Outline

1. Using Real-World Data/Evidence (RWD/RWE) to support regulatory decision making for *in vitro* Diagnostic (IVD) devices
2. Value of a National Evaluation System for health Technology (NEST)
3. Developing IVD infrastructure to support NEST
4. Collaborating to develop valuable/sustainable infrastructure for stakeholders (Better/ Cheaper/ Faster)
FDA Perspective on LOINC for IVDs*

1. Any similar coding system for characterizing IVDs (e.g., LOINC) is voluntary and will not be required or reviewed by FDA (distinct from the required FDA-accredited UDI system**)

2. FDA strongly encourages use of FDA-recognized consensus standard structured data format to communicate IVD descriptive coding.

 • Distribution of LOINC coding by manufacturers that suggests an unapproved/uncleared Indication for Use (i.e., off-label use) could result in the device being considered adulterated and/or misbranded.

 • Laboratories and/or other users must fulfill their obligations, including (but not limited to) any statutes, regulations, and validation procedures that must be complied with when making the results from the off-label uses available to those requesting the test.

3. A 3rd party resource for codes (and coding) could aid in harmonization efforts (e.g., Regenstrief)

**https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/UniqueDeviceIdentification/
Digital Format for LOINC to IVD (LIVD)

IVD Industry Connectivity Consortium (IICC) Mission:

• Modernize connectivity between laboratory IT systems and analyzers
• Enable clinical laboratories to achieve more and spend less

Digital Format for LOINC to IVD (LIVD)

<table>
<thead>
<tr>
<th>Column Header</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Version ID</td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Sortable column could be used if spreadsheet form multiple manufacturers are combined into one</td>
</tr>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Equipment UID</td>
<td></td>
</tr>
<tr>
<td>Equipment UID Type</td>
<td>Leave empty if no universal ID</td>
</tr>
<tr>
<td>Vendor Analyte Code</td>
<td></td>
</tr>
<tr>
<td>Vendor Analyte Name</td>
<td></td>
</tr>
<tr>
<td>Vendor Specimen Description</td>
<td></td>
</tr>
<tr>
<td>Vendor Result Description</td>
<td></td>
</tr>
<tr>
<td>Vendor Reference ID</td>
<td>Leave empty if no additional vendor reference</td>
</tr>
<tr>
<td>Vendor Comment</td>
<td>Leave empty if no vendor comment</td>
</tr>
<tr>
<td>LOINC Code</td>
<td>Leave empty if no LOINC mapping</td>
</tr>
<tr>
<td>LOINC Long Name</td>
<td>Leave empty if no LOINC mapping</td>
</tr>
<tr>
<td>Component</td>
<td>Leave empty if no LOINC mapping</td>
</tr>
<tr>
<td>Property</td>
<td>Leave empty if no LOINC mapping</td>
</tr>
<tr>
<td>Time</td>
<td>Leave empty if no LOINC mapping</td>
</tr>
<tr>
<td>System</td>
<td>Leave empty if no LOINC mapping</td>
</tr>
<tr>
<td>Scale</td>
<td>Leave empty if no LOINC mapping</td>
</tr>
<tr>
<td>Method</td>
<td>Leave empty if no LOINC mapping</td>
</tr>
</tbody>
</table>

HL7 is creating a Data Analysis Model (DAM) for LIVD
LIVD Contributors

Authors

Rob Bush
Orchard Software
USA

Andrzej Knafel, PhD
Roche Diagnostics International, Ltd.
Switzerland

Ed Heierman, PhD
Abbott
USA

Laurent Lardin
bioMérieux
France

Clem McDonald
NIH
USA

Participating Organizations

Abbott Laboratories
Advanced Medical Technology Association (AdvaMed)
Association of Public Health Laboratories (APHL)
BD Life Sciences
bioMérieux
Cerner Corporation
Epic
Geisinger Health Systems
HL7 Orders and Observations Working Group
IHE Pathology and Laboratory Medicine (PaLM)
Technical Committee
Intelligent Medical Objects, Inc

IVD Industry Connectivity Consortium (IICC)
Medical Device Innovation Consortium (MDIC)
National Laboratory of Medicine
Orchard Software
Phast
Regenstrief Center for Biomedical Informatics
Roche Diagnostics International, Ltd
Swiss Laboratory Interoperability Interest Group (Joint Venture of FAMH.ch, IHE-Suisse.ch, HL7.ch, SULM.ch)
U.S. Centers for Disease Control and Prevention (CDC)
U.S. Food and Drug Administration (FDA)
Vernetzt, LLC
LIVD Contributors

Authors

Rob Bush
Orchard Software
USA

Andrzej Knafel, PhD
Roche Diagnostics International, Switzerland

Ed Heierman, PhD
Abbott

Laurent Lardin
bioMerieux

Clem McDonald
NIH
USA

LAUNCHED JUNE 1st, 2017

http://ivdconnectivity.org/livd/

Participating Organizations

Abbott Laboratories
Advanced Medical Technology Association (AdvaMed)
Association of Public Health Laboratories (APHL)
BD Life Sciences
bioMerieux
Cerner Corporation
Epic
Geisinger Health Systems
HL7 Orders and Observations
IHE Pathology and Laboratory
Medical Device Innovation Consortium (MDIC)
National Laboratory of Medicine
Orchard Software
Phast
Regenstrief Center for Biomedical Informatics
Roche Diagnostics International, Ltd
Swiss Laboratory Interoperability Interest Group (Joint Efforts Toward an Integrated Laboratory Network)
U.S. Centers for Disease Control and Prevention (CDC)
U.S. Food and Drug Administration (FDA)
IVD Test LOINC Code Harmonization

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Assay</th>
<th>Assay Test Result (according to PI)</th>
<th>LOINC Code (Vendor)</th>
<th>LOINCs used by labs (lab name)</th>
<th>APHL recommended LOINC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>HIV Ag/Ab Combo</td>
<td>Reactive Nonreactive</td>
<td>56888-1</td>
<td>56888-1 (L1, L2)</td>
<td>56888-1</td>
</tr>
<tr>
<td>M1</td>
<td>HIV O Plus</td>
<td>Reactive Nonreactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>HIV-1 Western Blot (CLIA high complexity assay)</td>
<td>Positive Negative Indeterminate</td>
<td></td>
<td></td>
<td>PLT599</td>
</tr>
<tr>
<td>M3</td>
<td>HIV-1 RNA Qualitative Assay</td>
<td>Reactive Nonreactive Invalid</td>
<td>5018-7 = HIV1 RNA XXX Ql PCR 5017-9 = HIV1 RNA Bld Ql PCR</td>
<td></td>
<td>25835-0</td>
</tr>
<tr>
<td>M4</td>
<td>HIV-1 DNA and RNA Qualitative Detection by PCR, Plasma</td>
<td></td>
<td>48023-6 =HIV 1 proviral DNA SerPl Ql PCR (L1)</td>
<td></td>
<td>79379-4</td>
</tr>
</tbody>
</table>
IVD Test LOINC Code Harmonization

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Assay</th>
<th>Assay Test Result (according to PI)</th>
<th>LOINC Code (Vendor)</th>
<th>LOINC codes used by labs (lab name)</th>
<th>APHL recommended LOINC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>HIV Ag/Ab Combo</td>
<td>Reactive Nonreactive</td>
<td>56888-1</td>
<td>56888-1 (L1, L2)</td>
<td>56888-1</td>
</tr>
<tr>
<td>M1</td>
<td>HIV O Plus</td>
<td>Reactive Nonreactive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>HIV-1 Western Blot (CLIA high complexity assay)</td>
<td>Positive Negative Indeterminate</td>
<td></td>
<td></td>
<td>PLT599</td>
</tr>
<tr>
<td>M3</td>
<td>HIV-1 RNA Qualitative Assay</td>
<td>Reactive Nonreactive Invalid</td>
<td>5018-7 = HIV1 RNA XXX Ql PCR</td>
<td>5017-9 = HIV1 RNA Bld Ql PCR</td>
<td>25835-0</td>
</tr>
<tr>
<td>M4</td>
<td>HIV-1 DNA and RNA Qualitative Detection by PCR, Plasma</td>
<td></td>
<td></td>
<td></td>
<td>48023-6 = HIV 1 proviral DNA SerPl Ql PCR (L1)</td>
</tr>
</tbody>
</table>
LOINC Codes for Laboratories

Top 10 Lab Domain Overview

<table>
<thead>
<tr>
<th>Domain</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology</td>
<td>10,700</td>
</tr>
<tr>
<td>Chemistry</td>
<td>9,700</td>
</tr>
<tr>
<td>Drug/Toxicology</td>
<td>7,500</td>
</tr>
<tr>
<td>Allergy</td>
<td>3,800</td>
</tr>
<tr>
<td>Chemistry - Challenge</td>
<td>3,700</td>
</tr>
<tr>
<td>Serology</td>
<td>2,400</td>
</tr>
<tr>
<td>Hematology</td>
<td>2,100</td>
</tr>
<tr>
<td>Antibiotic Susceptibilities</td>
<td>1,700</td>
</tr>
<tr>
<td>Cell Markers</td>
<td>1,300</td>
</tr>
<tr>
<td>Molecular Pathology</td>
<td>1,700</td>
</tr>
</tbody>
</table>
Harmonization for Microbiology
LOINC Codes

Microbiology Code Harmonization Challenges/Needs:
• Microbiology codes (>10,700)
• Antimicrobial Susceptibility Test codes (>1,700)
• Multiple panels
• Open-ended tests (e.g., culture)
• Coding for molecular assays
• New technology
Proposal: IVD Infectious Diseases LOINC Mapping Manual

Objective:
Collaborate with stakeholders in the development of an unambiguous step-by-step manual defining how to map LOINC to IVD devices intended to identify and evaluate infectious disease agents.

Proposal:
• Develop a standardized document/manual to include:
 • processes, examples of all types of Microbiology IVDs, tools for LOINC adoption in microbiology
 • Mechanisms to solicit new LOINC codes
• Pilot manual clinical laboratories
• Coordinate with key stakeholders to attain input (Labs, Industry, EHR vendors, CDC, ONC, CMS, etc.).
• Post manual feedback, revision, implementation, support
Outline

1. Using Real-World Data/Evidence (RWD/RWE) to support regulatory decision making for *in vitro* Diagnostic (IVD) devices

2. Value of a National Evaluation System for health Technology (NEST)

3. Developing IVD infrastructure to support NEST

4. Collaborating to develop valuable/sustainable infrastructure for stakeholders (Better/ Cheaper/ Faster)
Unlocking Meaningful RWE in Electronic Healthcare Records (EHRs)

CDRH has a strategic priority to “increase access to and use of real-world evidence to support regulatory decisions.”

First Steps:

• Harmonize the application of semantic interoperability coding standards.

• Identify data elements needed to leverage in a regulatory decision.

• Populate a structured data format with needed content.

• Ensure that results are directly tied to the performance of a specific device (e.g., through a Unique Device Identifier system).
Conclusions/Requests

• There is an unused wealth of RWE siloed in data repositories which may be leveraged in regulatory decisions which can only be unlocked if the data is harmonized.

• OIR is engaging in cross-center and multi-stakeholder efforts to assist in the adoption of semantic interoperability standards and structured data formats, beginning with LIONC.

• Stakeholder input is critical to realizing the benefits of these efforts; please contact us via pre-submission or directly to let us know how we can help you.

Questions/Comments?
Contact: Michael.Waters@FDA.hhs.gov